$\mathrm{N} 3-\mathrm{S} 2-\mathrm{O} 4$	$108.3(1)$	$\mathrm{C} 15-\mathrm{S} 14-\mathrm{O} 29$	$106.9(1)$
$\mathrm{N} 3-\mathrm{S} 2-\mathrm{O} 5$	$105.9(1)$	$\mathrm{S} 14-\mathrm{C} 15-\mathrm{C} 16$	$119.1(2)$
$\mathrm{N} 3-\mathrm{S} 2-\mathrm{C} 11$	$106.8(1)$	$\mathrm{S} 14-\mathrm{C} 15-\mathrm{C} 20$	$119.8(2)$
$\mathrm{O} 4-\mathrm{S} 2-\mathrm{O} 5$	$119.9(1)$	$\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 20$	$120.9(2)$
$\mathrm{O} 4-\mathrm{S} 2-\mathrm{C} 11$	$108.0(1)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$117.3(2)$
$\mathrm{O} 5-\mathrm{S} 2-\mathrm{C} 11$	$107.2(1)$	$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18$	$124.7(2)$
$\mathrm{S} 2-\mathrm{N} 3-\mathrm{C} 6$	$119.6(2)$	$\mathrm{C} 16-\mathrm{C} 17-\mathrm{F} 22$	$116.9(2)$
$\mathrm{N} 3-\mathrm{C} 6-\mathrm{C} 13$	$110.2(2)$	$\mathrm{C} 18-\mathrm{C} 17-\mathrm{F} 22$	$118.4(2)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12$	$119.8(2)$	$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$	$115.2(2)$
$\mathrm{Cl1-C}-\mathrm{C} 7$	$120.1(2)$	$\mathrm{C} 17-\mathrm{C} 18-\mathrm{O} 23$	$130.2(2)$
$\mathrm{Cl1-C}-\mathrm{C} 9$	$119.3(2)$	$\mathrm{C} 19-\mathrm{C} 18-\mathrm{O} 23$	$114.6(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$120.6(2)$	$\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20$	$122.7(2)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$119.9(2)$	$\mathrm{C} 18-\mathrm{C} 19-\mathrm{F} 21$	$116.6(2)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$120.7(2)$	$\mathrm{C} 20-\mathrm{C} 19-\mathrm{F} 21$	$120.6(2)$
$\mathrm{S} 2-\mathrm{C} 11-\mathrm{C} 10$	$119.5(2)$	$\mathrm{C} 15-\mathrm{C} 20-\mathrm{C} 19$	$119.1(2)$
$\mathrm{S} 2-\mathrm{C} 11-\mathrm{C} 12$	$121.1(2)$	$\mathrm{C} 18-\mathrm{O} 2.3-\mathrm{C} 24$	$121.5(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$119.2(2)$	$\mathrm{O} 23-\mathrm{C} 24-\mathrm{C} 25$	$113.1(2)$
$\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 11$	$119.7(2)$	$\mathrm{C} 24-\mathrm{C} 25-\mathrm{O} 26$	$127.1(2)$
$\mathrm{C} 6-\mathrm{C} 13-\mathrm{S} 14$	$109.6(2)$	$\mathrm{C} 24-\mathrm{C} 25-\mathrm{O} 27$	$109.6(2)$
$\mathrm{C} 13-\mathrm{S} 14-\mathrm{C} 15$	$97.7(1)$	$\mathrm{O} 26-\mathrm{C} 25-\mathrm{O} 27$	$123.3(2)$
$\mathrm{C} 13-\mathrm{S} 14-\mathrm{O} 29$	$105.4(1)$	$\mathrm{C} 25-\mathrm{O} 27-\mathrm{C} 28$	$117.0(2)$

The MAXUS software package (Mackay et al., 1997) was used throughout the analysis.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1071). Services for accessing these data are described at the back of the journal.

References

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Larson, A. C. (1970). Cristallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber. pp. 291-294. Copenhagen: Munksgaard.
Mackay, S., Edwards, C., Henderson, A., Gilmore, C.. Stewart. N.. Shankland, K. \& Donald, A. (1997). MAXUS. Comprehensive Crystallography Software. Version 1.1-beta. MacScience, Japan.
Sato, M., Kawashima, Y., Goto, J., Yamane, Y.. Chiba, Y.. Jinno. S., Satake, M. \& Iwata, C. (1995). Eur. J. Med. Chem. 30, 403-1l4.
Waasmaier, D. \& Kirfel, A. (1995). Acta Crust. A51, 416-431.
termolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the molecules into infinite chains.

Comment

Derivatives of benzothiazole belong to a series of compounds which have especially remarkable biological properties (Varkonda et al., 1985). We report here on the crystal structure of 1-(1,3-benzothiazol-2-yl)-3,3,3-trichloro-2-propanol, (I).

(I)

The mean value of $1.377(4) \AA$ for the six $C-C$ bonds in the benzene ring is significantly short of the value of $1.397 \AA$ expected from neutron diffraction (Bacon et al., 1964). The two C-S distances [1.713 (3) and $1.733(3) \AA$] in the thiazole ring have values intermediate between those reported for $\mathrm{C}_{s p^{2}}$ S single $[1.81 \AA$] and double [$1.61 \AA$] bonds (Khan et al., 1988). The bond distances C4-N1 [1.272 (3) Å] and $\mathrm{N} 1-\mathrm{C} 5[1.394(3) \AA$] are in agreement with those found in related compounds (Bhatia et al., 1991; Teo et al., 1995). The benzothiazole nucleus adopts an almost planar conformation, with a dihedral angle between the individual planes of the benzene and thiazole rings of $1.20(8)^{\circ}$. The crystal packing is dominated by O $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds [Ol $\cdots \mathrm{N} 1^{i} 2.807(3), \mathrm{Hl} \cdots \mathrm{N} 1^{i}$ 1.64 (4) A, O—H $\cdots \mathrm{N}^{\mathrm{i}} 166(2)^{\circ}$; symmetry code: (i) x, $\left.-y, \frac{1}{2}+z\right]$, which link the molecules into infinite chains in the \mathbf{b} direction.

Fig. 1. ORTEPII (Johnson, 1976) plot of the title molecule, showing the labelling of the non-H atoms. Displacement ellipsoids are shown at 50% probability levels: H atoms are drawn as small circles of arbitrary radii.

Experimental

Full details of the synthetic procedure have been published by Ettel et al. (1950). Single crystals were prepared by crystallization from ethanol.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{NOS}$
$M_{r}=296.58$
Monoclinic
C2/c
$a=21.595(13) \AA$
$b=12.323(7) \AA$
$c=9.266(6) \AA$
$\beta=98.90(5)^{\circ}$
$V=2436(3) \AA^{3}$
$Z=8$
$D_{x}=1.617 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.63(1) \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in bromoform/hexane

Data collection
Syntex $P 2_{1}$ diffractometer $\theta / 2 \theta$ scans
Absorption correction: none
2822 measured reflections
2822 independent reflections 1352 reflections with
$I>2 \sigma(I)$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 15 reflections
$\theta=11.8-26.4^{\circ}$
$\mu=0.899 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block
$0.35 \times 0.25 \times 0.20 \mathrm{~mm}$ Colourless

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\text {max }}=0.024$
$R(F)=0.039$
$w R\left(F^{2}\right)=0.070$
$S=1.149$
2822 reflections
178 parameters
H atoms refined isotropically $w^{\prime}=1 /\left[\sigma^{2}\left(F_{O}^{2}\right)+(0.0332 P)^{2}\right]$ where $P=\left(F_{i}^{2}+2 F_{r}^{2}\right) / 3$
$\Delta \rho_{\text {max }}=0.215 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.221 \mathrm{e} \AA^{-3}$
Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

$$
\begin{aligned}
& \theta_{\max }=27.60^{\circ} \\
& h=0 \rightarrow 28 \\
& k=0 \rightarrow 16 \\
& l=-12 \rightarrow 11 \\
& 2 \text { standard reflections } \\
& \quad \text { frequency: } 100 \text { min } \\
& \text { intensity decay: none }
\end{aligned}
$$

$$
\text { where } P=\left(F_{i}^{2}+2 F_{r}^{2}\right) / 3
$$

Table 1. Selected geometric parameters (\AA, ${ }^{\circ}$)

S1-C10	1.713 (3)	C5-C6	1.373 (4)
SI-C4	1.733 (3)	C5-C10	1.400 (4)
$\mathrm{Ol}-\mathrm{C} 2$	1.374 (3)	$\mathrm{C} 6-\mathrm{C7}$	1.355 (4)
$\mathrm{N} 1-\mathrm{C} 4$	1.272 (3)	C7-C8	1.374 (4)
$\mathrm{Ni}-\mathrm{C} 5$	1.394 (3)	C8-C9	1.383 (4)
$\mathrm{Cl}-\mathrm{C} 4$	1.493 (4)	C9-C10	1.375 (4)
C10-SI-C4	89.40 (14)	$\mathrm{NI}-\mathrm{C} 4-\mathrm{SI}$	116.2 (2)
C4-N1-C5	110.7 (2)	$\mathrm{NI}-\mathrm{C} 5-\mathrm{Cl} 10$	114.4 (2)
$\mathrm{Ol}-\mathrm{C} 2-\mathrm{Cl}$	109.8 (2)	$\mathrm{C} 5-\mathrm{Cl} 10-\mathrm{Sl}$	$109.2(2)$
$\mathrm{Ol}-\mathrm{C} 2-\mathrm{C}$	110.8 (2)		

Non-H atoms were refined anisotropically, H atoms were located from a difference Fourier map and all parameters were refined isotropically.

Data collection: Syntex $P 2_{1}$ software. Cell refinement: Syntex $P 2_{1}$ software. Data reduction: XP21 (Pavelčík, 1987). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1264). Services for accessing these data are described at the back of the journal.

References

Bacon, G. E., Curry, N. A. \& Wilson, S. A. (1964). Proc. R. Soc. London Ser. A, 279, 98-110.
Bhatia, S. C., Kumar, A., Gautam, P. \& Jain, P. C. (1991). Acta Cryst. C47, 1908-1911.
Ettel, V., Weichet, J. \& Chyba. O. (1950). Collect. Czech. Chem. Commun. 15, 528-531.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Khan, M. A., Taylor, R. W., Lehn, J. M. \& Dietrich. B. (1988). Acta Cryst. C44, 1928-1931.
Pavelčík, F. (1987). XP21. Program for Syntex P2 ${ }_{1}$ Data Reduction. Comenius University, Bratislava, Slovakia.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Teo, S. B.. Okechuckwu, R. C. \& Teoh, S. G. (1995). Acta Cryst. C51, 1629-1630.
Varkonda, Š., Hýblová, O., Sutoris. V., Konečný, V. \& Mikulášek, S. (1985). Czechoslovakian Patent No. 239.411.

Acta Cryst. (1998). C54, 985-987

2,4,6-Tris(2-pyridyl)-1,3,5-triazine

Michael G. B. Drew, ${ }^{a}$ Michafl J. Hudson, ${ }^{a}$ Peter B. Iveson, ${ }^{a}$ Mark L. Russell ${ }^{a}$ and Charles Madic ${ }^{h}$
"Department of Chemistry; University of Reading, Whiteknights, Reading RG6 6AD, England, and ${ }^{\text {h }}$ Commissariat a l'Energie Atomique, Bâtiment 399 , BP 171, 30207 Bagnol-sur Ceze CEDEX, France. E-mail: m.g.b.drew@reading.ac.uk

(Received 5 January 1998; accepted 30 Januarr 1998)

Abstract

Molecules of the title compound, $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{6}$, were significantly distorted from planarity, with the three least-squares mean planes of the pyridine rings twisted from the plane of the central triazine ring by 15.7 (1), $33.8(1)$ and $19.8(1)^{\circ}$.

Comment

There is much current interest in the use of triazine ligands such as $2,4,6$-tris(2-pyridyl)-1,3,5-triazine (L^{1}, TPTZ) for the extraction and separation of metal ions (Byers et al., 1994, 1996; Chan et al., 1996). TPTZ and its substituted derivatives such as $2,4,6-\operatorname{tris}(4-$ tert-butyl-2-pyridyl)-1,3,5-triazine (L^{2}) are used in the nuclear industry as solvent-extraction reagents since they are able to separate trivalent actinides ($\mathrm{An}^{\text {III }}$) and lanthanides ($\mathrm{Ln}^{\mathrm{III}}$) from nitric acid media. The ligands have been found to form metal complexes in which they act as approximately planar tridentate ligands (Chan et

